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The Slow Passage through a Steady Bifurcation: 
Delay and Memory Effects 
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We consider the following problem as a model for the slow passage through a 
steady bifurcation: dy /d t=2( t ) y - y3+6 ,  where 2 is a slowly increasing 
function of t given by 2 = 2 i + e t  (2i<0). Both e and 6 are small parameters. 
This problem is motivated by laser experiments as well as theoretical studies of 
laser problems. In addition, this equation is a typical amplitude equation for 
imperfect steady bifurcations with cubic nonlinearities. When 6 =0, we have 
found that 2 =0  is not the point where the bifurcation transition is observed. 
This transition appears at a value 2 = 2j > 0. We call Z/the delay of the bifur- 
cation transition. We study this delay as a function of 2i, the initial position of 
2, and 6, the imperfection parameter. To this end, we propose an asymptotic 
study of this equation as ~--,0, e small but fixed. Our main objective is to 
describe this delay in terms of the relative magnitude of 6 and ~. Since time- 
dependent imperfections are always present in experiments, we analyze in the 
second part of the paper the effect of a small-amplitude but time-periodic imper- 
fection given by 6(t)= 6 cos(at), 
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time-periodic imperfections; control of laser instabilities. 

1. I N T R O D U C T I O N  

In  m a n y  e x p e r i m e n t s  t ha t  a re  m o d e l e d  as b i fu r ca t i on  p r o b l e m s  the  bifur-  

c a t i on  p a r a m e t e r  is de l ibe ra t e ly  va r i ed  in t ime  to sweep  ac ross  a who le  

p o r t i o n  of  the  b i fu r ca t i on  d i a g r a m .  ~1-9~ Th i s  p r o c e d u r e  is usua l ly  jus t i f ied  

by the  a s s u m p t i o n  tha t  if  the  sweep  ra te  is smal l  e n o u g h ,  the  bias  

i n t r o d u c e d  by a t i m e - d e p e n d e n t  p a r a m e t e r  s h o u l d  n o t  m o d i f y  qua l i t a t i ve ly  
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the static bifurcation diagram corresponding to a truly constant bifurcation 
parameter. 

Previous studies of such bifurcation problems (1~ ~7) indicate that the 
transfer of stability expected at a bifurcation or at a limit point may be 
delayed by the time dependence of the bifurcation parameter. This delay is 
controlled, in particular, by (1) the nature of the static critical point 
(steady bifurcation, Hopf bifurcation or limit point); (2) the initial value of 
the bifurcation parameter (since the problem is now nonautonomous); (3) 
the presence of small imperfections (static imperfections or noise). Thus, 
the delay produced by a slowly varying control parameter is a complicated 
function of several key parameters. To determine how the delay depends on 
the external parameters, we shall analyze a simple bifurcation problem 
using asymptotic methods. Such a detailed study can be valuable in 
connection with careful experiments designed to find out how to control 
(i.e., decrease or increase) this delay effect. This kind of information can 
also be obtained numerically, but the use of asymptotic results may be 
easier because the nonautonomous bifurcation problem depends on several 
time scales. 

From the physical point of view, a slowly varying parameter is an 
alternative mechanism for the experimental determination of the bifur- 
cation diagram of the stable solutions. This implies, however, a good 
understanding of the perturbation produced by slow variations of the bifur- 
cation parameter. In particular, we must analyze the slow passage through 
the critical point where transients are slow and the deviation between the 
exact solution and the static bifurcation diagram is expected to be 
maximum. 

In this paper, we pursue our study of the following imperfect bifur- 
cation problem: 

y, = 2(t) y - y3 + c5 (1. l) 

2 ( t )=2 i+e t  (1.2) 

y(0) = y i>  0, 2~<0, e, 6 > 0  (1.3) 

The nonlinear first-order equation (1.1) is a typical model problem for laser 
instabilities/TM Assuming 2i = O(1 ) and Yi = O(1 ), we find that the problem 
depends on two parameters: 2(t) is the slowly varying control or bifur- 
cation parameter and 6 is the imperfection parameter. Both e and 6 are 
small quantities. The behavior of the solutions of (1.1)-(1.3) depends on 
the relative values of 6 and e. (~5) Of particular physical interest is the case 

,~ e because the transition near the bifurcation transition is considerably 
delayed. A typical example is shown in Fig. 1 for 6 = 10 3 and e=0.1: y is 
almost zero and is slowly varying until a jump transition to another slowly 
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Fig. 1. Example of delayed bifurcation in the presence of an imperfection. Comparison 
between the perfect static curve ),2= ~. and the solution of y, = 2 ( t ) y - y 3 +  6 (curve with the 
arrows). Parameters are ~ = 10 3, ). = -1 + 10-1t, and y(0)=O.1. 

varying solution occurs at 2 = 2 i >  0. The value of ZJ is the delay of the 
bifurcat ion transition. Our  main  purpose  is to determine Zj(e, 6) 
analytically. To  this end, we shall investigate the limit 6 --* 0, e fixed. 

Recently, the effect of smal l -ampl i tude  noise on the t ime-dependent  
bifurcat ion d iagram was investigated for a laser p rob lem and an electronic 
system.~18 2o)The results of this s tudy raise the question of the persistence 
of the delayed t ransi t ion when the imperfect ion itself is t ime-dependent .  As 
a first app roach  to this problem,  we shall analyze a mode l  equat ion  where 
the imperfect ion is periodic in time. Specifically, we consider the modified 
equat ion  

y,  = 2(t) y - y3 + c5 cos(a t )  (1.4) 

which now depends on three parameters :  2, ~, and ~, the frequency of the 
t ime-periodic  imperfection. Clearly, as a - ~ 0 ,  c o s ( a t ) ~  1 if t ~  1/a and 
p rob lem (1.4) reduces to Eq. (1.1). On  the other  hand,  if a ~ 0% the time- 
periodic pe r tu rba t ion  operates  on a fast t ime scale and only its averaged 
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value will contribute to the long-time response of Eq. (1.4). This average 
value is zero. Consequently, we expect that the solution of Eq. (1.4) 
approaches the solution of problem (1.1) without imperfections (3--0). 
Thus, o is an important parameter for the delayed bifurcation transition 
and will considerably affect the position 2j of the jump transition to the 
new state. 

2. C O N S T A N T  IMPERFECTION 

We introduce a new time variable ~ defined by r ~ 2(t). This specifies 
r = 0 to be the instant at which the static bifurcation point 2 = 0 is reached. 
In terms of r, Eqs. (1.1)-(1,3) can be rewritten as 

~y~= zy--  y3 4- 6 (2.1) 

y(2i) = y i >  0, 2 i < 0  (2.2) 

This equation was analyzed in Ref. 15. When 6 is fixed and e ~ 0, we 
found the following results: 

1. There exists a stable, slowly varying solution on the z/e scale 
given by 

ys,v(z, e) = y,(r) + O(~) (2.3) 

where y,(r) is implicitly given by 

2 ~= y, - 6 / y s ,  y, > 0 (2.4) 

if 6 is sufficiently large (i.e., if 6 >> e3/4), the solution of Eq. (2.1) and (2.2) 
quickly approaches the slowly varying solution (2.3) and the transition 
near ~ = 0  is smooth and continuous. This regime corresponds to an 
"adiabatic following" of the static steady state: 

2=y~-6/y , ,  y ,>O,  2 , = 0  

2. If 6 = 0(/23/4), the expansion (2.3) becomes nonuniform near ~ = 0. 
The solution of Eq. (2.1) still approaches a slowly varying regime, which 
slightly deviates from (2.3) when ]~1 = O(/21/2). As 6 is further decreased, 
this deviation increases and becomes maximum as 6 ~ 0. 

We now analyze the limit 6-~ 0 in detail. To this end, we seek an 
asymptotic expansion as 6 ~ 0 of the solution of (2.t) and (2.2) in the form 

y('c, 0, /2) = y0('C, /2) 4- 6 y l ( t  , /2) 4- 6222(Z ", e) 4- ' "  (2,5) 
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The coefficients Yo, Y,, Y2 are determined by inserting (2.5) into (2.1) and 
equating to zero the resulting coefficients of each power of 6. We then 
obtain a hierarchy of problems for Y0, Yl ..... The equations for Yo and y~ 
are given by 

eyo~ = "Cyo - y~, yo(2,)  = y,  (2.6) 

e y l ~ = ( ' c - 3 y g ) y ~ + l ,  y1(2 , )=0  (2.7) 

Equation (2.6) is a Bernoulli equation and can be solved exactly. As e-+ 0 
and provided that 2~ < r < - • i ,  Yo is an exponentially small function given 
by 

where 

y o ~ A e x p [ ( ' c 2 - ~ . 2 ) / 2 g ] ~ l  as e--,O 

A = y i ( 1  - -  y 2 / ) . i ) - 1 / 2  

(2.8a) 

(2.8b) 

Using (2.8), we then solve Eq. (2.7) for y~. Considering now the time inter- 
val 0 < ~ < -A,, we obtain 

y l ~ ( 2 = / e ) l / 2 e x p ( ~ 2 / 2 z )  as e -+0  (2.9) 

which increases exponentially as soon as r increases. Thus, in order to keep 
the expansion (2.5) uniform for the interval 0 < r < - / . ~ ,  6 must be 
appropriately small. Let 

= 6o(e) e x p ( -  k2/2~) (2.10a) 

where k is assumed to be an O(1) constant that characterizes the smallness 
of 6 and 6o(e ) is a fixed algebraic function of e, 

6o(~) = e p (2.10b) 
> 

where p > 0. Using (2.8)-(2.10), we find that the expansion (2.5) now reads 

y(r, 6) ~ A exp[( r  2 - 22)/2e] 

+ a o ( e ) ( 2 ~ / e ) l / 2 e x p E ( * 2 - k 2 ) / 2 e ] + O ( 6 2 )  as e -+0  (2.11) 

and for the interval 0 < 1: < -2 , .  Considering the first two terms of this 
expansion, we note that it remains uniform provided that 

exp[(2, .2 -- k2)/2g] < (e/2rc)l/2A/6o(e) (2.12) 
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If k > -2 i ,  this condition is always fulfilled. If k < - 2  i, (2.12) requires that 
2 2 - k 2 < - ( 2 p - 1 ) e l n e  and p >  1/2. The analysis of the higher order 
correction of the solutions, i.e., 62y2(t"), leads to the same conclusion for the 
validity of the expansion (2.5). The expression (2.11) represents a nearly 
zero solution until ~ approaches - ) . i  or k. Beyond that point, the solution 
diverges, which corresponds to the beginning of a transition toward the 
vicinity of another steady solution. There exist two possibilities, depending 
on the reltive values of k and - 2 i .  

(i) If k > - 2 i ,  the first term in (2.11) increases exponentially as 

(ii) If k <  -2~, the second term in (2 .1~domina te  as z ~ k .  

A dynamical behavior described by two competing exponentials is not 
new in singular perturbation problems. It has been introduced for other 
problems ~2~'22~ and seems to be associated with the perturbation of 
separatrix trajectories (here the solution y = 0 when 6 = 0). 

In summary, the results of this section suggest that there exist two 
distinct behaviors for the delayed bifurcation transitions. They mainly 
depend on the relative values of 6 and e: 

1. If b < 6,, where 6,. = e p exp(-22/2e) ,  the delay is maximum and is 
given by ~ ~ -)~.  It is independent of the value of ~ and is a 
function of 2~. 

2. If ~ > 6,, the jump transition appears near ~ ~ k and is a function 
of 6, but not of 2~. 

As 6 ~ O(e3/4), the delay becomes insignificant. The qualitative predictions 
of this analysis are examined numerically in Section 4. 

3. T I M E - P E R I O D I C  I M P E R F E C T I O N  

In this section, we concentrate on Eqs. (1.2)-(1.4) and analyze the 
effect of a time-periodic imperfection. Sefining ~ = ,~(t) as our basic time 
variable, we can rewrite these equations as 

e y ~  = "cy - -  y 3  "-k 6 COS [-a(Z" - -  2i)/~ ] 

y ( 2 i ) = y i > O  , 2 i < 0  

(3.1) 

(3.2) 

As discussed in the introduction, we expect different responses, depending 
on the relative values of a, 6, and z. We consider several cases. 
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3.1 .  a < ~  

If ~ is sufficiently small compared to ~, the imperfection is 
quasiconstant during the interval 2i < v < -2 i .  Thus, the delayed transition 
will depend on the relative values of 6 and e as analyzed in Section 2. 

3.2.  cr = O ( E )  

If a = O(e), the periodic forcing operates on the same timescale as the 
slowly varying control parameter and perturbs the slow passage through 
the bifurcation point. We first define 

~o = o-/e (3 .3 )  

as a specified O(1) parameter. Assuming y~= O(1), we then seek a solution 
of (3.1) and (3.2) of the form (2.5). After substituting (2.5) and (3.3) into 
(3.1) and (3.21, we find that Yo satisfies Eq. (2.6) and that the equation for 
Yl is given by 

eYl~ = (~ -- 3yo 2) Yl + cos[o)(r -- 2i)] 
(3.41 

yl(Z~)= 0 

If ~<  --2i, Y0 is given by (2.8) and is exponentially small. Then solving 
(3.4) with Yo'~ 1, we obtain 

f~ yl(~) = e-1 exp(r2/2a) exp(-s2/2~) cos[co(s - )-i)] ds (3.5) 

As a ~ 0  and r~>x/~ ,  we evaluate the integral asymptotically. The 
expression for (3.5) then becomes 

yl(v),~ [exp(z2/2e)] 2x/~cos(co)oi) (3.6) 

which increases exponentially as r > 0. Thus, in order to keep the expan- 
sion in 6 uniformly valid for z > 0, we consider exponentially small values 
of 6 given by (2.10). The expansion (2.5) can be rewritten as 

y ~ A exp[(z 2 - 2~)/2a] 

+ {exp[(~2-k2)/2e]} 6o(e) 2x/~ecos(aZ~/e)+O(c~ 2) (3.7) 

The expression (3.7) indicates that y increases exponentially as r--* -2 i  
(r --* k) if k > -2 i  (if k < -2~). Furthermore, if k < -2~, we find from (3.7) 
that 

y ~  {exp[(~Z-k2)/2e]} 2 x / ~ c o s ( a 2 / / e  ) as ~ k  (3.8) 
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As a consequence, y ~ o o  ( y ~ - 0 o )  if cos(o.2j~)>0 [cos(o . i . je)<0] .  
Furthermore, if cos(o.2]e) is exponentially small, the jump transition may 
appear at larger values than z = k. 

3.3. o'= O(e 1/2) 

This case appears because the asymptotic evaluation of the integral in 
(3.5) leads to a different result if ~o = O(e-1/2). We define a new frequency 
by 

o. = ~1/212 (3.9) 

We now obtain from (3.5) the following expression for yl(z, e): 

Yl ~ [exp(z2/2e)] 2x/~e[exp(-~22/2)] cos(~2)oJ el/2) (3.10) 

which matches with (3,6) as [2 =el/Zoo ~ 0. Consequently, the expansion 
(2.5) with (3.10) becomes 

y ~ A exp[( r  2 - )~)/2e ] 

+ {exp[(z2-o .2-k2) /2e]}  3 o ( e ) ~  cos(o.2je) + 0(62) (3.11) 

By contrast to the previous case, the position of the jump transition is 
located at "E~(o-2+k2) 1/2 if k < - 2 i  and becomes a function of the 
frequency. 

3.4, a = O ( 1 )  

As o. approaches O(1) quantities, (3.11) indicates that the first term 
may grow exponentially before the second term if (o.2+k2)t/2>-)~i. 
Consequently, the jump transition will appear at z = - 2 i  and becomes 
independent of both 6 and o.. This can be confirmed by a direct multitime 
analysis of Eqs. (1.2)-(1.4). Using the expansion (2.5), we then find that 

y ~ A exp[(z 2 - 22)/2e] + 6f(z, o.t) + O(1~ 2) (3.12) 

where f is a 2n-periodic function of o.t. As z increases, y ~ oo as z ~ - 2  i. 

3.4. o ~ m  

The limit a-- ,  oo follows the result for a = O ( l ) ,  i.e., the expected 
transition occurs ar z ~ -2~. We study this case by a different multitime 
method. Defining T = at as our fast time and t as our slow time, we seek as 
o. --, oo a solution of (1.2)-(1.4) in the form 

y ( T , t , a ) = y o ( T , t ) + o -  l y l ( T , t ) +  ..- (3.13) 
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After introducing (3.13) into (1.4) and equating to zero the coefficients of 
each power of a - i ,  we obtain a hierarchy of problems for Yo, Yl ..... By 
requiring bounded solutions with respect to T (solvability conditions), we 
obtain 

Y = yo(t) + O(c r - l )  (3.14) 

where yo(t) satisfies the solvability condition: 

y o , = ( 2 , + e t ) y o -  y 3, y o ( 0 ) = y ,  (3.15) 

which is Eq. (2.6) if we define z = 2 i + e t .  The solution of this equation is 
given by (2.8) and reveals that the jump indeed appears at r = - 2 i .  The 
O(a -1) correction in (3.14) involves periodic functions of T. 

4. N U M E R I C A L  S T U D Y  

4.1. Constant  Imper fec t ion  

In the first part of this section we analyze the effect of a constant 
imperfection. In Fig. 2, we represent the delay 2 2 as a function of the imper- 

1.5 -~ 

1.0 

0.5 

Fig. 2. 

0.0 10 12 

Dependence of the delay on the imperfection. Parameters are e = 10 -1, y(0) = 0.5, 
and 2(0)= -1. 

822/48/5-6-8 
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fection parameter 6. The 2j is numerically defined as the value at which 
y(2~)= yi. The study of Eqs. (1.1)-(1.3) given in Section 2 suggests that 
there exist two distinct behaviors for 2s(6). First, as 6 ~ 0, 2~ ~ 2,.2 and is 
independent of 6. The delay can only be controlled by the initial position of 
the bifurcation parameter. On the other hand, below a critical value 
fic(e)'~l, Jt 2 ~ k  2 = - 2 e l n f i + O ( e l n e )  and the delay now becomes a 
function of 6. Although our mathematical analysis is restricted to very 
small values of 6, these two regimes are clearly observed in Fig. 2. The first 
regime corresponds to the horizontal part of the line in Fig. 2; the second 
regime is associated with the inclined part of the line in Fig. 2 and its slope 
is approximatively equal to 2e, as predicted by our analysis. 

4.2. Time-Periodic Imperfections 

We now analyze the effect of time-periodic imperfections. The results 
of our study are summarized in Table I. The values of the fixed parameters 
are 2i = -1,  e = 10 -2, 6 = 10 -3. The value of the frequency a is indicated in 
the table. It varies from small values (a = 10 -3) to O(1) values (~ = 1). If a 
is sufficiently small, we expect to find the result of Section 3.1, i.e., the delay 
appears at 2j~k, ,~(--2eln6)l /2~0.37.  As a progressively increases, 2/ 
increases continuously (Sections 3.2 and 3.3) and reaches its maximum 
when a is sufficiently large (Section 3.4), i.e., )v~ -2~=  1. An example of 
each case is displayed on Fig. 3. 

Table I 

a o) = c ~ / e  cosfco2i) O b s e r v e d  case P red i c t i on  

10 -3  10 i + a < s0 Sect ion  3.1 M i n i m u m  delay ,  

y ~  _+_oo if yi  ~ 0 

10 -2  1 + a =  O(e)) ,  Sect ion 3.2 y ~ + o o  

if cos(co2i) -~ 0 

5 x 10 -2  5 + 

10 i 10 --  

1.5 x 10 - I  15 --  

2 x 10 -1 20 + 

5 x 1 0 - '  50 + 

5 500 + 

I0 1000 + 

~r = O(el/2), Sec t ion  3.3 De lay  increases  wi th  a: 
"~i ~ ( a2 + k2) ~/2 
,~j ~ 0.42 

;~j-0.62 
~r = O(  1 ), Sec t ion  3.4 M a x i m u m  de lay  

i n d e p e n d e n t  o f  ~ a n d  6 
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Fig. 3. Influence of the modulation frequency a (given on the figure for each curve) on the 
solution of Yt = 2(0 y - y3 + ~ cos(at). Parameters are 6 = 10 -3, 2(t) = -1 + 10-2t. The curve 
y2= 2 is displayed for reference. 
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